Magnet.me - Het slimme netwerk waar studenten en professionals hun stage of baan vinden.
Het slimme netwerk waar studenten en professionals hun stage of baan vinden.
Je carrière begint op Magnet.me
Maak een profiel aan en ontvang slimme aanbevelingen op basis van je gelikete vacatures.
Would you like to work at the intersection of transportation, robotics and machine learning to design mixed fixed-flexible transport networks?
The increase of public transport usage has clear potential in transforming our environment to be more liveable, sustainable and convenient. However, to ensure economic viability during off-peak times and in relatively remote locations, while increasing attractiveness to users, we need innovative designs where fixed and flexible services support each other. This necessitates a multidisciplinary approach bringing together optimization, machine learning, and behavioral modeling methodologies.
In the FlexMobility project, we propose a holistic approach to designing a public transport network that includes both traditional fixed lines and flexible on-demand services, while considering the underlying travel behaviour. In the future, these mixed transportation systems may include fleets of autonomous cars, vans, and buses.
This PhD position within FlexMobility will focus on the underlying assignment and routing algorithms for real-time operation of the vehicle fleet and the multi-objective design of the mixed transportation network. Our key hypothesis is that it is possible to design a mixed network by simulating how to serve a given demand with an on-demand ridepooling service, tracking the vehicles’ routes, and allocating fixed lines wherever vehicles concentrate the most. For the implementation of the system, users will be allocated, in real time, to either the fixed lines or pooled on-demand vehicles. This requires efficient methods for large-scale task assignment and routing, leveraging combinatorial optimization and machine learning.
To achieve a holistic system, the developed methods will be enhanced with behavioral representations researched by another PhD candidate in the project. The developed methods could be applicable across many multi-agent coordination domains, from mobility, to logistics, and multi-robot systems.
In this work, we will consider two use cases:
For both use cases, there will be interaction with project partners for generating/obtaining the needed data as well as for setting up realistic case studies.
The position is available with a flexible start date to be agreed upon. The PhD candidate will join the Autonomous Multi-Robots Lab at the Cognitive Robotics Department and will be supervised by both Javier Alonso-Mora and Bilge Atasoy. Thanks to this synergetic collaboration, the PhD candidate will be able to collaborate with various researchers working on robotics and adaptive transport systems through methodologies of dynamic and predictive optimization, behavioral modeling, and machine learning. There is vivid interaction within the group to foster collaboration both with scientific and social activities.
As part of the PhD position, there will be opportunities to gain teaching experience in relevant courses and/or supervising MSc students.
More information about our research group can be found at: https://autonomousrobots.nl/.
Job Requirements
About TU Delft (Delft University of Technology)
Delft University of Technology is built on strong foundations. As creators of the world-famous Dutch waterworks and pioneers in biotech, TU Delft is a top international university combining science, engineering, and design. It delivers world-class results in education, research, and innovation to address challenges in the areas of energy, climate, mobility, health, and digital society. For generations, our engineers have proven to be entrepreneurial problem-solvers, both in business and in a social context.
Faculty Mechanical Engineering
From chip to ship. From machine to human being. From idea to solution. Driven by a deep-rooted desire to understand our environment and discover its underlying mechanisms, research and education at the ME faculty focus on fundamental understanding, design, production including application and product improvement, materials, processes, and (mechanical) systems.
ME is a dynamic and innovative faculty with high-tech lab facilities and international reach. It’s a large faculty but also versatile, so we can often make unique connections by combining different disciplines. This is reflected in ME’s outstanding, state-of-the-art education, which trains students to become responsible and socially engaged engineers and scientists. We translate our knowledge and insights into solutions to societal issues, contributing to a sustainable society and to the development of prosperity and well-being. That is what unites us in pioneering research, inspiring education, and (inter)national cooperation.
Conditions of Employment
Additional Information
For more information about this vacancy, please contact Prof. J. Alonso-Mora at j.alonsomora@tudelft.nl.
De fascinatie voor science, design en engineering is wat ruim 13000 bachelor & masterstudenten en 5000 medewerkers van de TU Delft drijft. De Technische Universiteit Delft is niet alleen de oudste, maar ook de grootste technische universiteit van Nederland: een universiteit die continu op zoek is naar jou als (inter)nationaal talent om het onderzoek en onderwijs van deze unieke instelling…
De fascinatie voor science, design en engineering is wat ruim 13000 bachelor & masterstudenten en 5000 medewerkers van de TU Delft drijft. De Technische Universiteit Delft is niet alleen de oudste, maar ook de grootste technische universiteit van Nederland: een universiteit die continu op zoek is naar jou als (inter)nationaal talent om het onderzoek en onderwijs van deze unieke instelling op topniveau te houden. Met ongeveer 5.000 medewerkers is de Technische Universiteit Delft de grootste werkgever in Delft. De acht faculteiten, de unieke laboratoria, onderzoeksinstituten, onderzoeksscholen en de ondersteunende universiteitsdienst bieden de meest uiteenlopende functies en werkplekken aan. De diversiteit bij de TU Delft biedt voor iedereen mogelijkheden. Van Hoogleraar tot Promovendus. Van Beleidsmedewerker tot ICT'er.
Bekijk ons aanbod:
Resources:
Change language to: English
Deze pagina is geoptimaliseerd voor mensen uit Nederland. Bekijk de versie geoptimaliseerd voor mensen uit het Verenigd Koninkrijk.